题目链接:HDU3622
【题意】在二维坐标系中给出N(<=100)个炸弹,每个炸弹可以放的两个坐标,有且只能放在一个位置,然后每个炸弹都有相同的圆形爆炸范围,最后求在保证没有任何两个炸弹的爆炸范围相交的情况下最大的半径。
【分析】第一个2-sat题,直接二分半径,判断2-sat可行性就好了,具体看代码
【AC CODE】202ms
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define rep(i,a,n) for(int i = a; i < n; i++)
#define clc(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXN = 100+10, MAXM = 200*200+10;
struct Twosat{
//id&1 = 1表示真,否则假(就是奇数编号为真,偶数编号为假)
int n, to[MAXM], next[MAXM],head[MAXN<<1],tol;
void init(int n)
{
this->n = n;
clc(head,-1);
tol = 0;
}
void add_edge(int u, int v)
{
next[tol] = head[u],to[tol] = v;
head[u] = tol++;
}
void add_clause(int x, int xv, int y, int vv)//添加关系,x为xv(xv = 0假,1真),y为vv
{
x = (x<<1)+xv;y = (y<<1)+vv;
add_edge(x^1,y);
add_edge(y^1,x);
}
bool vis[MAXN<<1];
int s[MAXN<<1], c;
bool dfs(int x)
{
if(vis[x^1]) return false;
if(vis[x]) return true;
vis[x] = true;
s[c++] = x;
for(int i = head[x]; ~i; i = next[i])
if(!dfs(to[i])) return false;
return true;
}
bool sloved()
{
clc(vis,0);
for(int i = 0; i < n<<1; i += 2)
{
if(!vis[i] && !vis[i^1])
{
c = 0;
if(!dfs(i))
{
while(c > 0) vis[s[--c]] = false;
if(!dfs(i^1)) return false;//i和i^1都不能选说明不存在2-sat的解
}
}
}
return true;
}
}twosat;
struct P{
double x,y;
}p[MAXN][2];
double dis[MAXN][2][MAXN][2];
int n;
double get_dis(const P &a, const P &b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
bool ok(double r)
{
twosat.init(n);
r *= 2;
rep(i,0,n)
{
rep(a,0,2)
{
rep(j,i+1,n)
{
rep(b,0,2)
{
if(dis[i][a][j][b] > r || fabs(dis[i][a][j][b]-r) < 1e-6) continue;
twosat.add_clause(i,a^1,j,b^1);
}
}
}
}
return twosat.sloved();
}
int main()
{
#ifdef SHY
freopen("e:\\1.txt", "r", stdin);
#endif
while(~scanf("%d%*c", &n))
{
double x = 0, y = 0, ans = 0;
rep(i,0,n)
scanf("%lf %lf %lf %lf%*c", &p[i][0].x, &p[i][0].y, &p[i][1].x, &p[i][1].y);
rep(i,0,n)
{
rep(a,0,2)
{
rep(j,i+1,n)
{
rep(b,0,2)
{
dis[i][a][j][b] = dis[j][b][i][a] = get_dis(p[i][a],p[j][b]);
y = max(y,dis[i][a][j][b]);
}
}
}
}
//printf("%.f\n", y);
while(x <= y)
{
double m = (x+y)/2.0;
if(ok(m)) ans = m, x = m+0.00001;
else y = m-0.00001;
}
printf("%.2f\n", ans);
}
return 0;
}