题目链接:HDU2586
【题意】给定一颗有权树,求任意两点之间的最短路。
【分析】是LCA的基本应用,树上任意两点(u,v)的最短路 = dis[u]+dis[v]-2*dis[LCA(u,v)];dis[i]为根到i的距离,我写了两个版本,离线和用线段树的在线(因为这里查询很少,用线段树比ST快,因为线段树初始化为O(n)的,ST是O(nlogn)的)
【AC CODE(离线)】46ms
#include <cstdio>
#include <cstring>
#include <cctype>
#include <cmath>
#include <map>
//#include <unordered_map>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;
typedef long long LL;
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
const int INF = 0x3f3f3f3f, MAXN = 40000+10, MAXM = 40000*2+10;
int head[MAXN], tol, to[MAXM], nxt[MAXM], cost[MAXM];
struct Q{
int v, id;
};
vector<Q> q[MAXN];
void add_edge(int u, int v, int c)
{
nxt[tol] = head[u], to[tol] = v, cost[tol] = c;
head[u] = tol++;
}
int f[MAXN];
int find(int x){return f[x] == x?x:f[x] = find(f[x]);}
void bing(int a, int b)
{
int x = find(a), y = find(b);
if(x != y) f[y] = x;
}
bool vis[MAXN];
int ans[200+10], dis[MAXN];
void lca(int u)
{
vis[u] = true;
for(int i = head[u]; ~i; i = nxt[i])
{
int v = to[i];
if(vis[v]) continue;
dis[v] = dis[u]+cost[i];
lca(v);
bing(u,v);
}
int sz = q[u].size();
rep(i,0,sz)
{
int v = q[u][i].v;
if(vis[v])
{
int fa = find(v);
ans[q[u][i].id] = dis[u]+dis[v]-2*dis[fa];
}
}
}
int main()
{
#ifdef SHY
freopen("d:\\1.txt", "r", stdin);
#endif
int t;
scanf("%d%*c", &t);
while(t--)
{
int n,m;
scanf("%d %d%*c", &n, &m);
clc(head,-1);
tol = 0;
rep(i,1,n)
{
int u,v,c;
scanf("%d %d %d%*c", &u, &v, &c);
add_edge(u,v,c);
add_edge(v,u,c);
}
repe(i,1,n) q[i].clear(), f[i] = i;
rep(i,0,m)
{
int u,v;
scanf("%d %d%*c", &u, &v);
q[u].push_back(Q{v,i});
q[v].push_back(Q{u,i});
}
clc(vis,0);
dis[1] = 0;
lca(1);
rep(i,0,m) printf("%d\n", ans[i]);
}
return 0;
}
【AC CODE(在线)】31ms
#include <cstdio>
#include <cstring>
#include <cctype>
#include <cmath>
#include <map>
//#include <unordered_map>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;
typedef long long LL;
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
const int INF = 0x3f3f3f3f, MAXN = 40000+10, MAXM = 40000*2+10;
int head[MAXN], tol, to[MAXM], nxt[MAXM], cost[MAXM];
void add_edge(int u, int v, int c)
{
nxt[tol] = head[u], to[tol] = v, cost[tol] = c;
head[u] = tol++;
}
int dis[MAXN],ft[MAXN],d[MAXN<<1],num[MAXN<<1],cnt;
bool vis[MAXN];
void dfs(int u, int deep)
{
ft[u] = cnt;
d[cnt] = deep, num[cnt++] = u;
vis[u] = true;
for(int i = head[u]; ~i; i = nxt[i])
{
int v = to[i];
if(vis[v]) continue;
dis[v] = dis[u]+cost[i];
dfs(v,deep+1);
d[cnt] = deep, num[cnt++] = u;
}
}
int mi_num[MAXN<<2];
inline int id(int x, int y){return x+y|x!=y;}
inline void push_up(int x, int y, int m)
{
int u = id(x,y), l = id(x,m), r = id(m+1,y);
if(d[mi_num[l]] < d[mi_num[r]]) mi_num[u] = mi_num[l];
else mi_num[u] = mi_num[r];
}
void bulid(int x, int y)
{
if(x == y)
{
mi_num[id(x,y)] = x;
return;
}
int m = (x+y)>>1;
bulid(x,m);
bulid(m+1,y);
push_up(x,y,m);
}
int query(int x, int y, int ql, int qr)
{
if(ql <= x && y <= qr) return mi_num[id(x,y)];
int m = (x+y)>>1, ans, mi = INF;
if(ql <= m)
{
int p = query(x,m,ql,qr);
if(mi > d[p]) mi = d[p], ans = p;
}
if(qr > m)
{
int p = query(m+1,y,ql,qr);
if(mi > d[p]) mi = d[p], ans = p;
}
return ans;
}
void lca_init()
{
cnt = 0;
dis[1] = 0;
clc(vis,0);
dfs(1,0);
bulid(0,cnt-1);
}
int lca_query(int x, int y)
{
int l = ft[x], r = ft[y];
if(l > r) swap(l,r);
int fa = num[query(0,cnt-1,l,r)];
return dis[x]+dis[y]-2*dis[fa];
}
int main()
{
#ifdef SHY
freopen("d:\\1.txt", "r", stdin);
#endif
int t;
scanf("%d%*c", &t);
while(t--)
{
int n,m;
scanf("%d %d%*c", &n, &m);
clc(head,-1);
tol = 0;
rep(i,1,n)
{
int u,v,c;
scanf("%d %d %d%*c", &u, &v, &c);
add_edge(u,v,c);
add_edge(v,u,c);
}
lca_init();
rep(i,0,m)
{
int u,v;
scanf("%d %d%*c", &u, &v);
printf("%d\n", lca_query(u,v));
}
}
return 0;
}