题目链接:POJ3233
【题意】给出N*N矩阵A,求A^1+A^2+A^3+…+A^K;k(<=10^9)
【分析】对于,A^k次,用快速幂即可,关键是求出Sk = A^1+A^2+A^3+…+A^K;
网上抄来的公式:
然后就是一个n×n的矩阵。
我做这题时用的是类似二分的方法做的,仔细观察可以发现
Sk = A + A2 + A3 + … + Ak
=(1+Ak/2)*(A + A2 + A3 + … + Ak/2 )+{Ak}
=(1+Ak/2)*(Sk/2 )+{Ak}
当k为偶数时不要大括号里面的数
【AC CODE】1688ms
#include <cstdio>
#include <cstring>
#include <cctype>
#include <cmath>
#include <map>
//#include <unordered_map>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;
typedef long long LL;
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
const int INF = 0x3f3f3f3f, MAXN = 31;
int n,MOD;
struct MATRIX {
int num[MAXN][MAXN];
void init(bool e){
clc(num,0);
if(e) rep(i,0,n) num[i][i] = 1;
}
}a;
MATRIX mul(const MATRIX& a, const MATRIX& b)
{
MATRIX ans;
ans.init(0);
rep(i,0,n)
{
rep(j,0,n)
{
rep(k,0,n) ans.num[i][j] = (ans.num[i][j]+a.num[i][k]*b.num[k][j])%MOD;
}
}
return ans;
}
MATRIX pow_mod(MATRIX x, int c)
{
MATRIX ans;
ans.init(1);
while(c)
{
if(c&1) ans = mul(ans,x);
x = mul(x,x);
c >>= 1;
}
return ans;
}
MATRIX add(const MATRIX &a, const MATRIX &b)
{
MATRIX ans;
rep(i,0,n)
{
rep(j,0,n) ans.num[i][j] = (a.num[i][j]+b.num[i][j])%MOD;
}
return ans;
}
MATRIX sum(int k)
{
if(1 == k) return a;
MATRIX ans;
ans.init(1);
ans = add(ans,pow_mod(a,k>>1));//1+A^(k/2)
ans = mul(ans,sum(k>>1));//(1+A^(k/2))*S(k/2)
if(k&1) ans = add(ans,pow_mod(a,k));
return ans;
}
int main()
{
#ifdef SHY
freopen("e:\\1.txt", "r", stdin);
#endif
int k;
scanf("%d %d %d%*c", &n, &k, &MOD);
rep(i,0,n)
{
rep(j,0,n) scanf("%d%*c", &a.num[i][j]);
}
MATRIX ans = sum(k);
rep(i,0,n)
{
printf("%d",ans.num[i][0]);
rep(j,1,n) printf(" %d", ans.num[i][j]);
putchar('\n');
}
return 0;
}