题目链接:HDU4602
【题意】给出n,k(<=10^9),在用1~n的数字的所有排列相加==n中,数字k出现的次数;
【分析】首先很容易发现任何n出现次数都是由1,2,5,12…这样一个规律倒着出现,例如n = 4时,1出现12次,2出现5次,3出现2次,4出现1次…这样类推,用cnt[i]记录这个1,2,5,12…序列,则n,k的答案就是cnt[n-k+1];当k>n是要特判为0
然后就是怎么快速求出这个序列了,通过暴力打表发现一个递推式:cnt[i]=sum[i-1]+p[i-1];其中cnt[i]表示第i个数字出现的次数,sum[i]是cnt[1]~cnt[i]的和,p[i-1]是2^(i-1);但是n有10^9,显然不能用递推式求和存;然后想到了用矩阵乘法求;为了简单把原式转换一下变成sum[i]=2*sum[i-1]+p[i-1];这样cnt[i]=sum[i]-sum[i-1];sum[1] = 1;然后只要构造出一个矩阵
X={2,0
1,2};
在构造一个矩阵A={sum[i-1],p[i-1]}
则A*X = {2*sum[i-1]+p[i-1], 2*p[i-1]} == {sum[i],p[i]};
这样A* X^n-1次就是{sum[n],p[n]};sum[n]算出来,sum[n-1]再算一下,答案就出来了;
【AC CODE】265ms
#include <cstdio>
#include <cstring>
#include <cctype>
#include <cmath>
#include <map>
//#include <unordered_map>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;
typedef long long LL;
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
const int INF = 0x3f3f3f3f, MOD = 1000000000+7;
/* sum[i] = 2*sum[i-1]+p[i-1]&&p[i]=2*p[i-1] sum[1] = 1 p[1] = 1*/
struct MATRIX{
LL num[2][2];
MATRIX(LL a1, LL a2, LL b1, LL b2)
{
num[0][0] = a1, num[1][0] = a2;
num[0][1] = b1, num[1][1] = b2;
}
};
MATRIX x = MATRIX(2,1,0,2);
MATRIX mul(const MATRIX &a, const MATRIX &b)
{
MATRIX ans = MATRIX(0,0,0,0);
rep(i,0,2)
{
rep(j,0,2)
{
rep(k,0,2)
ans.num[i][j] = (ans.num[i][j]+a.num[i][k]*b.num[k][j]%MOD)%MOD;
}
}
return ans;
}
MATRIX pow_mod(MATRIX x, int n)
{
MATRIX ans = MATRIX(1,0,0,1);
while(n)
{
if(n&1) ans = mul(ans,x);
x = mul(x,x);
n >>= 1;
}
return ans;
}
int main()
{
#ifdef SHY
freopen("e:\\1.txt", "r", stdin);
#endif
int t;
scanf("%d%*c", &t);
while(t--)
{
int n,k;
scanf("%d %d%*c", &n, &k);
if(k >= n)
{
if(k == n) puts("1");
else puts("0");
continue;
}
n = n-k+1;
MATRIX p = pow_mod(x,n-1);
LL ans = (p.num[0][0]+p.num[1][0])%MOD;
p = pow_mod(x,n-2);
ans = (ans-(p.num[0][0]+p.num[1][0])%MOD+MOD)%MOD;
printf("%I64d\n", ans);
}
return 0;
}
【暴力代码】
#include <cstdio>
#include <cstring>
#include <cctype>
#include <cmath>
#include <map>
//#include <unordered_map>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;
typedef long long LL;
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
const int INF = 0x3f3f3f3f, MAXN = 1000;
int cnt[MAXN], n, num[MAXN];
void dfs(int sum, int p)
{
if(sum == n)
{
repe(i,1,p) cnt[num[i]]++;
return;
}
repe(i,1,n-sum)
{
num[p+1] = i;
dfs(sum+i,p+1);
}
}
int main()
{
#ifdef SHY
freopen("e:\\1.txt", "r", stdin);
#endif
int t;
n = 20;
clc(cnt,0);
dfs(0,0);
int sum = 0;
printf("num cnt\t\tpow\tsum\tsum-pow\t\tcnt-pow\n");
repe(i,1,n)
{
sum += cnt[n-i+1];
printf("%2.d: %-10.d %-10.0lf %-10d %-10.0lf %-10.0lf %-10.0lf\n", i,cnt[n-i+1], pow(2,i-1),sum,sum-pow(2,i-1),cnt[n-i+1]-pow(2,i-1),sum-cnt[n-i+1]+pow(2,i-2));
//printf("%d-%d: %d\n", i,i-1,cnt[n-i+1]-cnt[n-i+2]);
}
return 0;
}